Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38591772

RESUMO

Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.


Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem Micológica
2.
Sci Rep ; 14(1): 5932, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467766

RESUMO

Glyoxal oxidases, belonging to the group of copper radical oxidases (CROs), oxidize aldehydes to carboxylic acids, while reducing O2 to H2O2. Their activity on furan derivatives like 5-hydroxymethylfurfural (HMF) makes these enzymes promising biocatalysts for the environmentally friendly synthesis of the bioplastics precursor 2,5-furandicarboxylic acid (FDCA). However, glyoxal oxidases suffer from inactivation, which requires the identification of suitable redox activators for efficient substrate conversion. Furthermore, only a few glyoxal oxidases have been expressed and characterized so far. Here, we report on a new glyoxal oxidase from Trametes versicolor (TvGLOX) that was expressed at high levels in Pichia pastoris (reclassified as Komagataella phaffii). TvGLOX was found to catalyze the oxidation of aldehyde groups in glyoxylic acid, methyl glyoxal, HMF, 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA), but barely accepted alcohol groups as in 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), preventing formation of FDCA from HMF. Various redox activators were tested for TvGLOX reactivation during catalyzed reactions. Among them, a combination of horseradish peroxidase and its substrate 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) most efficiently reactivated TvGLOX. Through continuous reactivation of TvGLOX in a two-enzyme system employing a recombinant Moesziomyces antarcticus aryl-alcohol oxidase (MaAAO) almost complete conversion of 8 mM HMF to FDCA was achieved within 24 h.


Assuntos
Oxirredutases do Álcool , Furaldeído/análogos & derivados , Peróxido de Hidrogênio , Polyporaceae , Trametes , Trametes/genética , Trametes/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredução , Glioxal
3.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
4.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685920

RESUMO

Being an abundant renewable source of aromatic compounds, lignin is an important component of future bio-based economy. Currently, biotechnological processing of lignin through low molecular weight compounds is one of the conceptually promising ways for its valorization. To obtain lignin fragments suitable for further inclusion into microbial metabolism, it is proposed to use a ligninolytic system of white-rot fungi, which mainly comprises laccases and peroxidases. However, laccase and peroxidase genes are almost always represented by many non-allelic copies that form multigene families within the genome of white-rot fungi, and the contributions of exact family members to the overall process of lignin degradation has not yet been determined. In this article, the response of the Trametes hirsuta LE-BIN 072 ligninolytic system to the presence of various monolignol-related phenolic compounds (veratryl alcohol, p-coumaric acid, vanillic acid, and syringic acid) in culture media was monitored at the level of gene transcription and protein secretion. By showing which isozymes contribute to the overall functioning of the ligninolytic system of the T. hirsuta LE-BIN 072, the data obtained in this study will greatly contribute to the possible application of this fungus and its ligninolytic enzymes in lignin depolymerization processes.


Assuntos
Lacase , Trametes , Lacase/genética , Trametes/genética , Lignina , Fenóis
5.
Braz J Microbiol ; 54(3): 1565-1572, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572179

RESUMO

Laccases are appealing biocatalysts for various industrial utilizations. The fungus Trametes versicolor (L.: Fr.) Pilát causes white rot in wood and has been identified as an important fungal laccase producer. To investigate laccase production and activity in T. versicolor, the native isolate was collected from the host (Quercus castaneifolia) in the forests of Guilan province, northern Iran, and then purified and identified using the molecular marker. Its ability to produce laccase enzyme in the presence of different plant substrates including sawdust and wood chips of oak, poplar, and pine was evaluated. Also, the effect of copper as an enzyme inducer was investigated in vitro. The results showed that adding the wood to the culture medium increased laccase production, and among these, oak sawdust had the greatest effect, a 1.7-fold increase from that in the control (4.8 u/l vs. 2.8 u/l). Also, the enzyme extraction time effect on the optimal recovery yield showed that the 5-h enzyme extraction cycle resulted in the highest yield of the enzyme (18.97 u/l). Moreover, adding different concentrations of copper to the fungal culture medium increased the production of laccase, and the highest amount of enzyme (92.04 u/l) was obtained with 3.5 mM of CuSO4 along with oak sawdust. Based on the results, the addition of host wood sawdust ("oak" in this work) and copper particles together stimulates the fungal growth and the laccase production during submerged cultivation of T. versicolor. Therefore, it would be a safe and cheap strategy for the commercial production of laccase by filamentous fungi.


Assuntos
Lacase , Polyporaceae , Lacase/química , Trametes/genética , Cobre
6.
Microbiol Spectr ; 11(4): e0076823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395668

RESUMO

The function of Seryl-tRNA synthetase in fungi during gene transcription regulation beyond translation has not been reported. Here, we report a seryl-tRNA synthetase, ThserRS, which can negatively regulate laccase lacA transcription in Trametes hirsuta AH28-2 under exposure to copper ion. ThserRS was obtained through yeast one-hybrid screening using a bait sequence of lacA promoter (-502 to -372 bp). ThserRS decreased while lacA increased at the transcription level in T. hirsuta AH28-2 in the first 36 h upon CuSO4 induction. Then, ThserRS was upregulated, and lacA was downregulated. ThserRS overexpression in T. hirsuta AH28-2 resulted in a decrement in lacA transcription and LacA activity. By comparison, ThserRS silencing led to increased LacA transcripts and activity. A minimum of a 32-bp DNA fragment containing two putative xenobiotic response elements could interact with ThserRS, with a dissociation constant of 919.9 nM. ThserRS localized in the cell cytoplasm and nucleus in T. hirsuta AH28-2 and was heterologously expressed in yeast. ThserRS overexpression also enhanced mycelial growth and oxidative stress resistance. The transcriptional level of several intracellular antioxidative enzymes in T. hirsuta AH28-2 was upregulated. Our results demonstrate a noncanonical activity of SerRS that acts as a transcriptional regulation factor to upregulate laccase expression at an early stage after exposure to copper ions. IMPORTANCE Seryl-tRNA synthetase is well known for the attachment of serine to the corresponding cognate tRNA during protein translation. In contrast, its functions beyond translation in microorganisms are underexplored. We performed in vitro and cell experiments to show that the seryl-tRNA synthetase in fungi with no UNE-S domain at the carboxyl terminus can enter the nucleus, directly interact with the promoter of the laccase gene, and negatively regulate the fungal laccase transcription early upon copper ion induction. Our study deepens our understanding of the Seryl-tRNA synthetase noncanonical activities in microorganisms. It also demonstrates a new transcription factor for fungal laccase transcription.


Assuntos
Saccharomyces cerevisiae , Serina-tRNA Ligase , Saccharomyces cerevisiae/metabolismo , Trametes/genética , Trametes/metabolismo , Serina-tRNA Ligase/metabolismo , Lacase/genética , Lacase/metabolismo , Cobre/metabolismo , Íons
7.
PLoS One ; 18(5): e0286105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252911

RESUMO

Oxidative defense or arsenic(As) changes exhibited by Trametes versicolor in response to toxicity under As stress remain unclear. In this study, after internal transcribed spacer identification, a wild T. versicolor HN01 strain was cultivated under 40 and 80 mg/L of As III stress. The antioxidant contents by multifunctional microplate reader and the speciations of As by high performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry were examined to explore the detoxification mechanisms. The results demonstrated this strain could tolerate As concentration of 80 mg/L with a bio-enrichment coefficients of 11.25. Among the four antioxidants, the activities of catalase, superoxide dismutase, and glutathione in the As-stress group at 80 mg/L improved by 1.10, 1.09, and 20.47 times that of non-stress group, respectively. The speciation results indicated that AsV was the dominant species in the hyphae of T. versicolor regardless of no-stress or As-stress. The detoxification mechanisms of this strain were involved alleviating the toxicity by increasing the activities of antioxidants, especially glutathione, as well as by converting As III into As V and other less toxic As species. T. versicolor could be used as a bio-accumulator to deal with As exposure in contaminated environments based on its extraordinary As tolerance and accumulation capacities.


Assuntos
Arsênio , Arsênio/toxicidade , Arsênio/análise , Trametes/genética , Trametes/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa/metabolismo
8.
Microbiol Res ; 270: 127333, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804127

RESUMO

Many fungi show a strong preference for specific habitats and growth conditions. Investigating the molecular mechanisms of fungal adaptation to varying environmental conditions is of great interest to biodiversity research and is important for many industrial applications. In this study, we compared the transcriptome profiles of two previously genome-sequenced white-rot wood-decay fungi, Trametes pubescens and Phlebia centrifuga, during their growth on two common plant biomass substrates (wheat straw and spruce) at two temperatures (15 °C and 25 °C). The results showed that both fungi partially tailored their molecular responses to different types of carbon sources, differentially expressing genes encoding polysaccharide degrading enzymes, transporters, proteases and monooxygenases. Notably, more lignin modification related AA2 genes and cellulose degradation related AA9 genes were differentially expressed in the tested conditions of T. pubescens than P. centrifuga. In addition, we detected more remarkable transcriptome changes to different growth temperature in P. centrifuga than in T. pubescens, which reflected their different ability to adapt to the temperature fluctuations. In P. centrifuga, differentially expressed genes (DEGs) related to temperature response mainly encode protein kinases, trehalose metabolism, carbon metabolic enzymes and glycoside hydrolases, while the main temperature-related DEGs identified in T. pubescens are only the carbon metabolic enzymes and glycoside hydrolases. Our study revealed both conserved and species-specific transcriptome changes during fungal adaptation to a changing environment, improving our understanding of the molecular mechanisms underlying fungal plant biomass conversion at varying temperatures.


Assuntos
Trametes , Transcriptoma , Temperatura , Biomassa , Trametes/genética , Trametes/metabolismo , Lignina/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética
9.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36690343

RESUMO

The laccases from white-rot fungi exhibit high redox potential in treating phenolic compounds. However, their application in commercial purposes has been limited because of the relatively low productivity of the native hosts. Here, the laccase A-encoding gene lacA of Trametes sp. AH28-2 was overexpressed under the control of the strong promoter of cbh1 (Pcbh1), the gene encoding the endogenous cellobiohydrolase 1 (CBH1), in the industrial workhorse fungus Trichoderma reesei. Firstly, the lacA expression cassette was randomly integrated into the T. reesei chromosome by genetic transformation. The lacA gene was successfully transcribed, but the laccase couldn't be detected in the liquid fermentation condition. Meanwhile, it was found that the endoplasmic reticulum-associated degradation (ERAD) was strongly activated, indicating that the expression of LacA probably triggered intense endoplasmic reticulum (ER) stress. Subsequently, the lacA expression cassette was added with the downstream region of cbh1 (Tcbh1) to construct the new expression cassette lacA::Δcbh1, which could replace the cbh1 locus in the genome via homologous recombination. After genetic transformation, the lacA gene was integrated into the cbh1 locus and transcribed. And the unfolded protein response (UPR) and ERAD were only slightly induced, for which the loss of endogenous cellulase CBH1 released the pressure of secretion. Finally, the maximum laccase activity of 168.3 U/l was obtained in the fermentation broth. These results demonstrated that the reduction of secretion pressure by deletion of endogenous protein-encoding genes would be an efficient strategy for the secretion of heterologous target proteins in industrial fungi. ONE-SENTENCE SUMMARY: The reduction of the secretion pressure by deletion of the endogenous cbh1 gene can contribute to heterologous expression of the laccase (LacA) from Trametes sp. AH28-2 in Trichoderma reesei.


Assuntos
Celulase , Trichoderma , Trametes/genética , Lacase/genética , Lacase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulase/genética , Celulase/metabolismo , Degradação Associada com o Retículo Endoplasmático , Trichoderma/genética , Trichoderma/metabolismo
10.
BMC Microbiol ; 23(1): 29, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703110

RESUMO

BACKGROUND: Trametes gibbosa, which is a white-rot fungus of the Polyporaceae family found in the cold temperate zone, causes spongy white rot on wood. Laccase can oxidize benzene homologs and is one of the important oxidases for white rot fungi to degrade wood. However, the pathway of laccase synthesis in white rot fungi is unknown. RESULTS: The peak value of laccase activity reached 135.75 U/min/L on the 9th day. For laccase activity and RNA-seq data, gene expression was segmented into 24 modules. Turquoise and blue modules had greater associations with laccase activity (positively 0.94 and negatively -0.86, respectively). For biology function, these genes were concentrated on the cell cycle, citrate cycle, nicotinate, and nicotinamide metabolism, succinate dehydrogenase activity, flavin adenine dinucleotide binding, and oxidoreductase activity which are highly related to the laccase synthetic pathway. Among them, gene_8826 (MW199767), gene_7458 (MW199766), gene_61 (MW199765), gene_1741 (MH257605), and gene_11087 (MK805159) were identified as central genes. CONCLUSION: Laccase activity steadily increased in wood degradation. Laccase oxidation consumes oxygen to produce hydrogen ions and water during the degradation of wood. Some of the hydrogen ions produced can be combined by Flavin adenine dinucleotide (FAD) to form reduced Flavin dinucleotide (FADH2), which can be transmitted. Also, the fungus was starved of oxygen throughout fermentation, and the NADH and FADH2 are unable to transfer hydrogen under hypoxia, resulting in the inability of NAD and FAD to regenerate and inhibit the tricarboxylic acid cycle of cells. These key hub genes related to laccase activity play important roles in the molecular mechanisms of laccase synthesis for exploring industrial excellent strains.


Assuntos
Lacase , Polyporaceae , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Transcriptoma , Prótons , Polyporaceae/metabolismo , Oxigênio
11.
Fungal Genet Biol ; 161: 103716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35691497

RESUMO

White rot fungi, especially Trametes spp., respond to a wide range of aromatic compounds and dramatically enhance laccase activity, while the activation mechanisms remain to be elucidated. Here, we show that an Hsp70 homolog named ThhspA1 regulates the transcription of laccase LacA in Trametes hirsuta AH28-2 when confronted with o-toluidine. ThhspA1 is pulled down by lacA promoter sequence from the nuclear mixture extracted from T. hirsuta AH28-2 induced by 2 mM o-toluidine. Silencing of ThhspA1 results in a sharp decrease in lacA transcripts and laccase activity in vivo. By comparison, ThhspA1 overexpression does not affect lacA transcription, and laccase activity shows slight enhancement or remains unchanged upon induction with o-toluidine. Electrophoretic mobility shift assays suggest a direct interaction between ThhspA1 and the lacA promoter region. Further investigation shows that the integrity of ThhspA1 is critical since its substrate binding domain (SBD) and nucleotide-binding domain (NBD) are both necessary for DNA binding, with a higher affinity of SBD than NBD based on fluorescence polarization assay. Our results demonstrate that ThhspA1 functions as an aromatic-stress-related DNA binding transcriptional factor required for LacA expression.


Assuntos
Lacase , Trametes , DNA/metabolismo , Lacase/metabolismo , Polyporaceae , Toluidinas , Trametes/genética , Trametes/metabolismo
12.
Integr Cancer Ther ; 21: 15347354221090221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35426328

RESUMO

AIM: To investigate the mechanisms employed by PS-T (polysaccharides of Trametes, PS-T), the main active ingredient of Huaier granules, to improve the susceptibility of hepatoma cells to oxaliplatin (OXA). METHODS: Cell proliferation in response to PS-T was determined both in vitro and in vivo. The effects of PS-T on miRNAs were analyzed with the use of a microarray. MiRNAs were screened under specific conditions (P < .05, logFoldChange > ABS [1.5]) and further silenced or overexpressed by liposome transfection. Levels of ABCB1 mRNA and P-gp were detected by qRT-PCR and western blot analysis, respectively. A dual fluorescence assay was performed to determine whether miRNA directly targets ABCB1. RESULTS: PS-T enhanced the inhibitory effect of OXA in human hepatoma cells and xenografts. Among 5 up-regulated miRNAs, overexpression of only miR-224-5p inhibited the expression of ABCB1 mRNA and P-gp, while silencing of miR-224-5p had an opposite effect. Moreover, miR-224-5p can directly target the 3'-UTR of ABCB1. CONCLUSION: PS-T increases the sensitivity of human hepatoma cells to OXA via the miR-224-5p/ABCB1/P-gp axis.


Assuntos
Agaricales , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxaliplatina/farmacologia , Polyporaceae , Polissacarídeos/farmacologia , RNA Mensageiro/genética , Trametes/genética , Trametes/metabolismo
13.
J Biomol Struct Dyn ; 40(14): 6330-6339, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554764

RESUMO

Functional annotation of Trametes villosa genome was performed to search Class II peroxidase proteins in this white-rot fungus, which can be valuable for several biotechnological processes. After sequence identification and manual curation, five proteins were selected to build 3 D models by comparative modeling. Analysis of sequential and structural sequences from selected targets revealed the presence of two putative Lignin Peroxidase and three putative Manganese Peroxidase on this fungal genome. All 3 D models had a similar folding pattern from selected 3 D structure templates. After minimization and validation steps, the best 3 D models were subjected to docking studies and molecular dynamics to identify structural requirements and the interactions required for molecular recognition. Two reliable 3 D models of Class II peroxidases, with typical catalytic site and architecture, and its protein sequences are indicated to recombinant production in biotechnological applications, such as bioenergy.Communicated by Ramaswamy H. Sarma.


Assuntos
Polyporaceae , Trametes , Corantes , Lignina/química , Lignina/metabolismo , Peroxidase , Peroxidases/metabolismo , Polyporaceae/metabolismo , Trametes/genética , Trametes/metabolismo
14.
BMC Biotechnol ; 21(1): 64, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740358

RESUMO

BACKGROUND: Alizarin red (AR) is a typical anthraquinone dye, and the resulting wastewater is toxic and difficult to remove. A study showed that the white rot fungus Trametes gibbosa (T. gibbosa) can degrade dye wastewater by decolorization and has its own enzyme-producing traits. METHODS: In this study, transcriptome sequencing was performed after alizarin red treatment for 0, 3, 7, 10, and 14 h. The key pathways and key enzymes involved in alizarin red degradation were found to be through the analysis of KEGG and GO. The Glutathione S-transferase (GST), manganese peroxidase (MnP) and laccase activities of T. gibbosa treated with alizarin red for 0-14 h were detected. LC-MS and GC-MS analyses of alizarin red decomposition products after 7 h and 14 h were performed. RESULTS: The glutathione metabolic pathway ko00480, and the key enzymes GST, MnP, laccase and CYP450 were selected. Most of the genes encoding these enzymes were upregulated under alizarin red conditions. The GST activity increased 1.8 times from 117.55 U/mg prot at 0 h to 217.03 U/mg prot at 14 h. The MnP activity increased 2.9 times from 6.45 to 18.55 U/L. The laccase activity increased 3.7 times from 7.22 to 27.28 U/L. Analysis of the alizarin red decolourization rate showed that the decolourization rate at 14 h reached 20.21%. The main degradation intermediates were found to be 1,4-butene diacid, phthalic acid, 1,1-diphenylethylene, 9,10-dihydroanthracene, 1,2-naphthalene dicarboxylic acid, bisphenol, benzophenol-5,2-butene, acrylaldehyde, and 1-butylene, and the degradation process of AR was inferred. Overall, 1,4-butene diacid is the most important intermediate product produced by AR degradation. CONCLUSIONS: The glutathione metabolic pathway was the key pathway for AR degradation. GST, MnP, laccase and CYP450 were the key enzymes for AR degradation. 1,4-butene diacid is the most important intermediate product. This study explored the process of AR biodegradation at the molecular and biochemical levels and provided a theoretical basis for its application in practical production.


Assuntos
Polyporaceae , Trametes , Antraquinonas , Biodegradação Ambiental , Lacase/genética , Peroxidases , Trametes/genética
15.
Sci Rep ; 11(1): 2569, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510299

RESUMO

Trametes species are efficient wood decomposers that are widespread throughout the world. Mitogenomes have been widely used to understand the phylogeny and evolution of fungi. Up to now, two mitogenomes from the Trametes genus have been revealed. In the present study, the complete mitogenomes of two novel Trametes species, Trametes versicolor and T. coccinea, were assembled and compared with other Polyporales mitogenomes. Both species contained circular DNA molecules, with sizes of 67,318 bp and 99,976 bp, respectively. Comparative mitogenomic analysis indicated that the gene number, length and base composition varied between the four Trametes mitogenomes we tested. In addition, all of the core protein coding genes in Trametes species were identified and subjected to purifying selection. The mitogenome of T. coccinea contained the largest number of introns among the four Trametes species tested, and introns were considered the main factors contributing to size variations of Polyporales. Several novel introns were detected in the Trametes species we assembled, and introns identified in Polyporales were found to undergo frequent loss/gain events. Large-scale gene rearrangements were detected between closely related Trametes species, including gene inversions, insertions, and migrations. A well-supported phylogenetic tree for 77 Basidiomycetes was obtained based on the combined mitochondrial gene set using 2 phylogenetic inference methods. The results showed that mitochondrial genes are effective molecular markers for understanding the phylogeny of Basidiomycetes. This study is the first to report the mitogenome rearrangement and intron dynamics of Trametes species, which shed light on the evolution of Trametes and other related species.


Assuntos
Basidiomycota/genética , Genoma Mitocondrial/genética , Íntrons/genética , Trametes/genética , Migração Animal/fisiologia , Filogenia
16.
Curr Microbiol ; 77(12): 3953-3961, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025181

RESUMO

The decolorization of dye and textile effluent by Trametes hirsuta was studied in both induced and non-induced media. A removal of 70-100% of the color was achieved through adsorption and the action of laccases. Laccase activity was increased significantly with the addition of grapefruit peel (4000 U/mL) and effluent with grapefruit peel (16,000 U/mL) in comparison with the basal medium (50 U/mL). Analysis of the expression of laccase isoenzymes lac-B and lac-T revealed clear differences in the expression of these genes. The low levels of expression of lac-B in all media suggest a basal or constitutive gene expression, whereas lac-T was over-expressed in the media with effluent, and showed an up/down regulation depending on culture conditions and time. The results obtained suggest that the lac-T gene of T. hirsuta is involved in the decolorization of dyes.


Assuntos
Lacase , Trametes , Corantes , Lacase/genética , Polyporaceae , Têxteis , Trametes/genética
17.
Prep Biochem Biotechnol ; 50(8): 753-762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153244

RESUMO

Agricultural practices generate lignocellulosic waste that can be bioconverted by fungi to generate value-added products such as biofuels. In this context, fungal enzymes are presented as an alternative for their use in the hydrolysis of cellulose to sugars that can be fermented to ethanol. The aim of this work was to characterize LBM 033 strain and to analyze its efficiency in the hydrolysis of cellulosic substrates, including barley straw. LBM 033 strain was identified as Trametes villosa by molecular techniques, through the use of the ITS and rbp2 markers and the construction of phylogenetic trees. The cell-free supernatant of T. villosa LBM 033 showed high titers of hydrolytic enzymatic activities, necessary for the hydrolysis of the holocellulosic substrates, hydrolyzing pure cellulose to cellobiose and glucose and also degraded the polysaccharides contained in barley straw to short soluble oligosaccharides. These results indicate that macro fungi from tropical soil environments, such as T. villosa LBM 033 can be a valuable resource for in-house, cost effective production of enzymes that can be applied in the hydrolysis stage, which could reduce the total cost of bioethanol production.


Assuntos
Hordeum/metabolismo , Trametes/enzimologia , Biocatálise , Biocombustíveis , Biotecnologia , Celobiose/metabolismo , Celulose/metabolismo , Glucose/metabolismo , Hidrólise , Filogenia , Trametes/genética
18.
Mol Biol Rep ; 47(1): 477-488, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664595

RESUMO

In this study, two laccase isoenzymes (Lac1 and Lac2) from the culture supernatant of Trametes hirsuta MX2 were purified, and the genes (Lac1 and Lac2) coding the isoenzymes were cloned. Both Lac1 and Lac2 contained an open reading frame of 1563 bp with an identity of 79%. The two isoenzymes showed significant biochemical differences. The maximal activities of Lac1 and Lac2 were at pH 2.5 with 2-2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS), and the optimal temperatures for the activities of Lac1 and Lac2 were 60 and 50 °C, respectively. Lac1 exhibited excellent resistance to acidic conditions and retained 62.17% of its initial activity at pH 2.5 after a 72-h incubation. Lac2 was more thermostable than Lac1 with half-lives (t1/2) of 9.58 and 3.12 h at 50 and 60 °C, respectively; the t1/2 of Lac1 were only 4.19 and 0.88 h, respectively. Both Lac1 and Lac2 isoenzymes have a strong tolerance to Mg2+, Mn2+, Cu2+, and EDTA (50 mM). At a low concentration of 0.05 U mL-1, the enzymes could decolorize towards Remazol Brilliant Blue R, Acid Red 1, Crystal Violet, and Neutral Red in the presence of ABTS. These unusual properties demonstrated that the two laccases have strong potential for specific industrial applications.


Assuntos
Corantes , Proteínas Fúngicas , Lacase , Trametes , Clonagem Molecular , Corantes/análise , Corantes/química , Corantes/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas , Lacase/química , Lacase/genética , Lacase/isolamento & purificação , Lacase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Trametes/enzimologia , Trametes/genética
19.
Folia Microbiol (Praha) ; 65(2): 431-437, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31863277

RESUMO

Laccases have been widely explored for their ligninolytic capability in bioethanol production and bioremediation of industrial effluents. However, low reaction rates have posed a major challenge to commercialization of such processes. This study reports the first evidence of laccase inhibition by two types of lignin degradation intermediates - fungal-solubilized lignin and alkali-treated lignin - thus offering a highly plausible explanation for low reaction rates due to buildup of inhibitors during the actual process. Reversed-phase high-performance liquid chromatography revealed the presence of similar polar compounds in both lignin samples. A detailed kinetic study on laccase, using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as the substrate, was used to calculate the Michaelis constant (Km) and maximum reaction rate (Vmax). With an increase in the concentration of lignin degradation intermediates, Vmax remained nearly constant, while Km increased from 1.3 to 4.0 times that of pure laccase, revealing that the inhibition was competitive in nature. The kinetic studies reported here and the insight gained into the nature of inhibition can help design process strategies to mitigate this effect and improve overall process efficiency. This work is applicable to processes that employ laccase for delignification of biomass, such as second-generation biofuels processes, as well as for industrial effluent treatment in paper and pulp industries.


Assuntos
Proteínas Fúngicas/química , Lacase/química , Lignina/química , Biocatálise , Biodegradação Ambiental , Cinética , Trametes/química , Trametes/enzimologia , Trametes/genética
20.
Molecules ; 23(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200573

RESUMO

Coriolus versicolor is an herb widely used for cancer treatment in traditional Chinese medicine. Its active ingredients, polysaccharopeptides (PSP), have been used for adjuvant therapies in cancer treatment. This study conjugates Coriolus versicolor PSP with poly(ethylenimine) (PEI) to generate a PSP-PEI copolymer for gene transfer. After PEI conjugation, both the pH buffering capacity and DNA compaction ability of PSP are significantly increased. Compared with that of PSP, the transfection efficiency of PSP-PEI is 10 to 20-fold higher in vitro. This is a proof-of-concept study reporting the direct use of bioactive phytochemicals from traditional Chinese medicine for gene vector development. The promising performance of PSP-PEI raises the possibility that bioactive herbal ingredients can be further developed as a multi-therapeutic gene carrier for tackling cancers.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Compostos Fitoquímicos/química , Proteoglicanas/química , DNA/química , DNA/uso terapêutico , Humanos , Compostos Fitoquímicos/genética , Polímeros/química , Proteoglicanas/genética , Trametes/química , Trametes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...